
MCCCS

Multi Channel Classification
and Clustering System

User Documentation for MCCCS

Jean-Michel Pape & Christian Klukas

Last update: 21.01.2016

Table of contents

1. Overview

2. Installation

2.1 General notes

2.2 System requirements

3. Application examples

3.1 Preparation

3.2 Application example descriptions

3.3 Start the analysis

4. Detailed analysis workflow description: Segmentation example using
supervised classifier

4.1 Input data

4.2 Data preparation

4.3 Training

4.4 Prediction

APPENDIX

- Command descriptions

User Documentation MCCCS V1.0.0 (January 2016) 2|16

Overview
The MCCCS (Multi Channel Classification and Clustering System) has
been developed by the group Image Analysis (Jean-Michel Pape &
Christian Klukas) at IPK (Leibniz Institute of Plant Genetics and
Crop Plant Research, D–06466 Gatersleben, Germany). It is a powerful
system which utilizes machine learning approaches for image
processing and image analysis. Especially, it is designed to solve
segmentation tasks. Furthermore, it is able to handle multi channel
data, such as hyperspectral data sets (BSQ, TIFF) and supports up to
32-bit images. The example applications illustrates the main
capabilities and the usage of the system. The examples can be easily
downloaded and prepared (see Chapter 'Run application examples').

Installation

General notes
MCCCS can be downloaded from the following sourceforge project
website: http://sourceforge.net/projects/mcccs/. Additional
information is also provided on the project page
http://mcccs.sourceforge.net/. The provided .zip file includes the
utility commands for image processing and file conversion, which are
included into the mcccs.jar. Preferred machine learning libraries can
be individually selected by the user (here, for the application
examples, the WEKA library is used). Also example scripts and
datasets are included to show the systems main capabilities, within
different application examples. Usually, several commands are
summarized in a script file which represents a so called pipeline.

All commands, included in the mcccs.jar, can be run by using a
command-line interface (terminal). Commands are called using the
following scheme.

$JAVA.command parm_1 parm_n file

A detailed overview about the used parameters for each command can be
found in the appendix.

Please see next section for detailed system requirements.

User Documentation MCCCS V1.0.0 (January 2016) 3|16

http://sourceforge.net/projects/mcccs/
http://mcccs.sourceforge.net/

System requirements
For using the system a commandline interface like GNU-Bash (linux,
MAC) or Cygwin (Windows) and a Java installation (Java Runtime
Environment, JRE of version 1.8 or higher, sometimes called Java 8 or
higher) is needed1. Preferred are 64-bit versions of Java, as they
support the utilization of more than 1600 MB of RAM. Machine learning
libraries can be selected by the user, we recommend WEKA
(http://www.cs.waikato.ac.nz/ml/weka/). Also a commandline interface
like Bash is needed.

1 MAC users, please install the Java Development Kit JDK instead of the JRE.

User Documentation MCCCS V1.0.0 (January 2016) 4|16

LINUX → Tested on Fedora Core 20 and Arch Linux using Bash.

MS WIN → All scripts will be made available using the Cygwin
commandline interface (https://www.cygwin.com/).

MAC → Tested on Mac OS 10.10 (Yosemite) and 10.11 (El Capitan)

https://www.cygwin.com/
http://www.cs.waikato.ac.nz/ml/weka/

Run application examples

Preparation
Installation of additional commands

For running the provided application examples, a prepare script is
provided (downloading the needed data sets and libraries). Therefore,
the Wget2 command is needed (http://www.gnu.org/software/wget/) for
data transfer purposes. Also, UnZip3 (http://www.info-zip.org/) is
utilized for archive extraction. Also as mentioned in the system
requirements a commandline interface and Java installation is needed.
Depending on the system configuration, the installation of additional
packages or other versions may be needed. To check the command
availability and version on your specific system, please start the
corresponding commands in the commandline interface (WIN → cygwin;
LINUX, MAC → terminal). May add the additional option --version.

It is also recommended to check the following commands:
→ wget, bash, unzip, bc, xargs and java

If no error appears, your system contains the required commands. Most
of the Linux distributions includes the needed shell commands. Mac
and Windows/Cygwin users, please note the following hints to install
the needed commands. Cygwin users also need the unzip, wget and bc4

command, which is not included in the default installation.

2 Tested with version 1.16.1.
3 Tested with version 6.0.
4 bc is an arbitrary precision calculator language

User Documentation MCCCS V1.0.0 (January 2016) 5|16

Additional hints for Mac users

• for running Java in the terminal, the Java Development Kit is needed
• the Wget command can be installed by using Rudix

(http://rudix.org/packages/wget.html).

Example for the bash command:

bash --version

output:

GNU bash, version 4.2.53(1)-release (x86_64-redhat-linux-gnu) ...

http://rudix.org/packages/wget.html
http://www.info-zip.org/
http://www.gnu.org/software/wget/

Download and preparation of the example data

The application examples can be downloaded and prepared by executing
the prepare_datasets.sh in a terminal. The example data and needed
libraries are automatically downloaded and transferred into the
common folder structure for processing with the given example
scripts. Included are the following examples:

Application example descriptions

1. segmentation_example_1_classification

This example shows an application for foreground/background
segmentation for top view plant images (Arabidopsis thaliana - A1, A2
and tobacco - A3) using a supervised Random Forest classifier. The
three data sets are split into a training set and a data set for
prediction as well. After processing, the segmentation results, named
foreground.png, are stored in each sub folder, e.g. plant_003.

2. hyper_example_1_classification

This example shows an application for a multi-labeled segmentation on
an airbone hyper-spectral image data set. Here partly pre-classified
ground-truth image masks are used to train a supervised Random Forest
classifier. After processing, the segmentation result, named
classified.png is stored in the experiment sub folder (stack_images
→ dc).

3. hyper_example_2_clustering

This example shows an application for a multi-labeled segmentation on
an airbone hyper-spectral image data set as used in the example
before. Instead of using pre-classified ground-truth data to train a
supervised classifier here a clustering approach is performed. After
processing, the segmentation result, named clustered.png is stored in
the experiment sub folder (stack_images → dc).

User Documentation MCCCS V1.0.0 (January 2016) 6|16

Additional hints for Windows/Cygwin users

• for Cygwin it is recommend to choose the needed packages (UnZip, Wget, bc)
by utilizing the package search tool while installation (in an existing
installation just restart the setup to add additional packages)

Start of the analysis ...
The analysis can be started by navigating into the corresponding
experiment folder, by executing the process_ … .sh script in a
terminal (e.g. segmentation_example_1_classification → execute
process_segmentation_example_1_classification.sh in the experiment
folder). The results, including a labeled result image and the
belonging numeric data, named all_ … .csv, are stored into the
corresponding sub-folders.

User Documentation MCCCS V1.0.0 (January 2016) 7|16

Detailed analysis workflow description:
Segmentation example using supervised
classifier

Here a example workflow description is presented. It describes the
general procedure to perform a foreground/background segmentation
using a supervised classification approach. The workflow includes the
following steps:

1. Creation of training data

2. Data preparation (create folder structure)

3. Script adaptation for training and prediction

This guide provides an exemplary overview about the general procedure
and the main components (commands) for solving a common segmentation
task. For a detailed understanding it is recommended to become
familiar with the provided application examples by studying the given
example pipeline-scripts.

Input data
For the illustration of the example workflow a top-view image
including an 'arabidopsis thaliana' plant is used. The goal of the
analysis is to generate a foreground/background segmentation
utilizing a supervised classification approach5.

5 example data and used plant images within the documentation are from:
http://www.plant-phenotyping.org/CVPPP2014-challenge, please cite this paper if
you use this data for your research:

Hanno Scharr, Massimo Minervini, Andreas Fischbach, Sotirios A. Tsaftaris.
Annotated Image Datasets of Rosette Plants. Technical Report No. FZJ-2014-03837,
Forschungszentrum Jülich, 2014).

User Documentation MCCCS V1.0.0 (January 2016) 8|16

http://www.plant-phenotyping.org/CVPPP2014-challenge

Data preparation

Training-data preparation

A supervised classification use training data to create a model which
includes some knowledge to predict the un-classified data. First
samples for foreground and background have to be created utilizing an
image editing software e.g. GIMP (http://www.gimp.org/). The
following illustrations show the common proceed, it is sufficient to
highlight only a few spots of the foreground and background regions
(see illustration below). The labeled images could be named as
mask_1 … n.png.

User Documentation MCCCS V1.0.0 (January 2016) 9|16

Illustration 3: Marked
foreground regions.

Illustration 2: Labeling
of the foreground using
GIMP.

Illustration 4: Manually
marked background
mask.

Illustration 1: RGB input
image of an arabidopsis
plant. (see http://www.plant-
phenotyping.org/CVPPP2014-
challenge)

http://www.gimp.org/
http://www.plant-phenotyping.org/CVPPP2014-challenge
http://www.plant-phenotyping.org/CVPPP2014-challenge
http://www.plant-phenotyping.org/CVPPP2014-challenge

Creating folder structure

The underlying folder structure is not strict designed, it depends on
the utilized scripts. Here the structure used in the application
examples is recommended. This exemplary structure looks like this:

For generation of the sub folder structure some scripts are provided,
e.g. move_all_to_subdir.sh can be used to move all replicate images
(which may be stored together into one folder) into its belonging
sub-folder.

Training
Now the analysis scripts have to be prepared. The training script
includes following steps:

Split RGB

SplitRGB image

→ Splits an RGB input image into separate channel images.

ARFF sampling

ArffSampleFileGenerator number_of_channels number_of_classes

User Documentation MCCCS V1.0.0 (January 2016) 10|16

→ experiment

→ script files (e.g. preprocess.sh, train.sh, predict.sh, ...)

→ training

→ replicate_1

→ image

→ mask_1 … n

→ replicate_2

→ replicate_n

→ prediction

→ replicate_1

→ image_1 … n

→ replicate_2

→ replicate_n

sample_size folder

(e.g. for segmentation use following parameters: 3, -2, 2000,
replicate_i)

→ Sampling and feature selection from input images, generates .arff
file for classifier training.

The individual .arff files could be summarized using commadline
utilities, e.g.:

Here all fgbgTraining.arff files from the sub-directories are
summarized to an file named all_fgbg.arff. This file will be used for
classifier training.

Model training

The following command depends on the used machine learning library,
for our example using WEKA we could define a Random Forest classifier
as follows:

$WEKA weka.classifiers.meta.FilteredClassifier -t 'all_fgbg.arff' -d
fgbg.model -W weka.classifiers.trees.RandomForest -- -I 100 -K 0 -S
1

Here the summarized ARFF files all_fgbg.arff are loaded by the WEKA
library, the result is a model named fgbg.model which can be used to
predict the fore- and background on the un-classified images.

In case of fully labeled ground truth data some scripts for
evaluation are provided such as:

CreateDiffImage ground_truth classification_result

The script generates a difference image between the prediction and
the ground truth mask.

User Documentation MCCCS V1.0.0 (January 2016) 11|16

for dir in */;

do

cat "${dir}/fgbgTraining.arff" | grep -v filter | grep -v
another_filter >> all_fgbg.arff

done

Prediction
Image conversion

For the prediction of the whole un-classified image, first it has to
be converted into its belonging ARFF file using the following
command:

ArffFromImageFileGenerator number_of_channels number_of_classes
folder

Apply trained model

Utilizing WEKA the trained model 'fgbg.model' can be applied on a
unclassified ARFF file using:

$WEKA weka.filters.supervised.attribute.AddClassification -i "$
{dir}/${dir}.arff" -serialized fgbg.model -classification -remove-
old-class -o "${dir}/result.arff" -c last

Using the previously generated model and the converted image ARFF
file, a result ARFF file including the classification information
will be generated.

Classification result mask creation

The generated result ARFF file is used to create an result mask
including the segmentation result. This mask defines all pixels which
belongs to the fore- and background. By applying this mask on the
input image the final segmentation can be created.

ApplyClass0ToImage output_name

User Documentation MCCCS V1.0.0 (January 2016) 12|16

Illustration 5: Generated result
mask including the labeled
foreground (black).

Illustration 6: Result of
applying mask on input
image.

Post processing

For quantification of the result image the quantify command can be
used. It creates automatically a CSV file for each individual
processed data file.

Quantify result_image

This will create a output CSV file like this:

File Class_1 Class_2 overall

Repl_1 x y z

Here class_1 and class_2 represent the fore- and background. To
summarize all CSV files a script, as shown in the following box,
could be utilized which summarize all individual CVS files.
Afterwards the the CVS file is transformed by the TransformCVS
command.

User Documentation MCCCS V1.0.0 (January 2016) 13|16

for dir in plant*/;

do

cat ${dir}/*_quantified.csv >> all_results.csv

done

$JAVA.TransformCSV all_results.csv

mv all_results.csv.transformed all_results.csv

APPENDIX

Command description

ArffFromImageFileGenerator

Prameter(s): [channel-count], [class-count], [filenames]

Creates a ARFF file from a list of images, representing the different
input channels.

ArffSampleFileGenerator

Prameter(s): [channel-count], [[-]class-count, negative for FGBG
separation], [sample-size], [filenames]

Sampling and feature selection from input images, generates .arff
file for classifier training.

ArffToImageFileGenerator

Prameter(s): [channel-count], [filenames]

Recreates an image file from a labeled ARFF file. If in addition a
mask image is provided, only foreground pixels from the mask are
processed and filled with pixels, colored according to the ARFF file
sample class information.

ApplyClass0ToImage

Prameter(s): [filename]

Generates a labeled result image in case of foreground/background
segmentation.

ExportImagesFromHyperspec

Prameter(s): [prefix], [overflow threshold or negative value to
disable], [filenames]

Exports each channel of an hyperspectral data set in a separate
image. Ready for processing the BSQ format, also tif stacks including
the channel-data in different slices.

SplitTiffStackToImages

Prameter(s): [filename]

Splits Tiff stack into individual images (for hyper-spectral data).

User Documentation MCCCS V1.0.0 (January 2016) 14|16

SplitRGB

Prameter(s): [filename]

Splits a given RGB input image into a set of three gray-scale images
(R/G/B), representing the different input channels.

PowerSetGenerator

Prameter(s): [class-count], [filenames]

Processes a list of given input images, containing labeling
information on a particular disease class. The combinations (multi-
labeling problem) of overlapping masks are calculated and according
result label images are generated.

Quantify

Prameter(s): [filename]

Calculates the areas of the different labels in the input image and
creates a corresponding CSV result file.

RGB2HSV/LAB/XYZ

Prameter(s): [filename – R], [filename – G], [filename - B]

Converts the given input RGB data into spcified color-space.

Filter

Prameter(s): [filenames], [output-filename], [masksize],
[sigma], [operation mode]

Enables different kinds of image filters (operation modes) (Gaussian
Blur (sigma), Median, Sharpen, Texture) for enhanced feature
calculation. The parameter masksize defines the filter-size.

SmoothSides

Prameter(s): [filenames]

Fits polynoms to the foreground object left and right sides, and
creates a result image with a smoothed representation of the input
image.

User Documentation MCCCS V1.0.0 (January 2016) 15|16

SplitObjects

Prameter(s): [filenames]

Objects in the input image, which reach from top to bottom and which
are separated horizontally from each other are split from each other.
A list of output images is created, each containing a single object
extracted from the input image.

CreateDiffImage

Prameter(s): [filenames]

Generates difference image between calculated result and given ground
truth image for evaluation purposes.

TransformCSV

Prameter(s): [filenames]

Combines multiple CSV input image files, with information on
different labels into a single table, with a overall set of label-
columns.

User Documentation MCCCS V1.0.0 (January 2016) 16|16

	Table of contents
	1. Overview
	2. Installation
	2.1 General notes
	2.2 System requirements
	3. Application examples
	3.1 Preparation
	3.2 Application example descriptions
	3.3 Start the analysis
	4. Detailed analysis workflow description: Segmentation example using supervised classifier
	4.1 Input data
	4.2 Data preparation
	4.3 Training
	4.4 Prediction
	APPENDIX
	- Command descriptions
	Overview
	Installation
	General notes

	All commands, included in the mcccs.jar, can be run by using a command-line interface (terminal). Commands are called using the following scheme.
	$JAVA.command parm_1 parm_n file
	A detailed overview about the used parameters for each command can be found in the appendix.
	Please see next section for detailed system requirements.
	System requirements

	Run application examples
	Preparation
	Application example descriptions
	1. segmentation_example_1_classification
	2. hyper_example_1_classification
	3. hyper_example_2_clustering

	Start of the analysis ...

	
	Detailed analysis workflow description: Segmentation example using supervised classifier
	Here a example workflow description is presented. It describes the general procedure to perform a foreground/background segmentation using a supervised classification approach. The workflow includes the following steps:
	1. Creation of training data
	2. Data preparation (create folder structure)
	3. Script adaptation for training and prediction
	This guide provides an exemplary overview about the general procedure and the main components (commands) for solving a common segmentation task. For a detailed understanding it is recommended to become familiar with the provided application examples by studying the given example pipeline-scripts.
	Input data
	Data preparation
	Training-data preparation
	Creating folder structure

	Training
	Prediction

	APPENDIX
	Command description
	ArffFromImageFileGenerator
	ArffSampleFileGenerator
	ArffToImageFileGenerator
	ApplyClass0ToImage
	ExportImagesFromHyperspec
	SplitTiffStackToImages
	SplitRGB
	PowerSetGenerator
	Quantify
	RGB2HSV/LAB/XYZ
	Filter
	SmoothSides
	SplitObjects
	CreateDiffImage
	TransformCSV

